Package: bets.covid19 1.0.0

Qingyuan Zhao

bets.covid19: The BETS Model for Early Epidemic Data

Implements likelihood inference for early epidemic analysis. BETS is short for the four key epidemiological events being modeled: Begin of exposure, End of exposure, time of Transmission, and time of Symptom onset. The package contains a dataset of the trajectory of confirmed cases during the coronavirus disease (COVID-19) early outbreak. More detail of the statistical methods can be found in Zhao et al. (2020) <arxiv:2004.07743>.

Authors:Qingyuan Zhao [aut, cre], Nianqiao Ju [aut]

bets.covid19_1.0.0.tar.gz
bets.covid19_1.0.0.zip(r-4.5)bets.covid19_1.0.0.zip(r-4.4)bets.covid19_1.0.0.zip(r-4.3)
bets.covid19_1.0.0.tgz(r-4.5-any)bets.covid19_1.0.0.tgz(r-4.4-any)bets.covid19_1.0.0.tgz(r-4.3-any)
bets.covid19_1.0.0.tar.gz(r-4.5-noble)bets.covid19_1.0.0.tar.gz(r-4.4-noble)
bets.covid19_1.0.0.tgz(r-4.4-emscripten)bets.covid19_1.0.0.tgz(r-4.3-emscripten)
bets.covid19.pdf |bets.covid19.html
bets.covid19/json (API)

# Install 'bets.covid19' in R:
install.packages('bets.covid19', repos = c('https://qingyuanzhao.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/qingyuanzhao/bets.covid19/issues

Datasets:

On CRAN:

Conda-Forge:

2019-ncov

4.43 score 27 stars 2 scripts 261 downloads 5 exports 1 dependencies

Last updated 5 years agofrom:b9ad1400d0. Checks:8 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKFeb 15 2025
R-4.5-winOKFeb 15 2025
R-4.5-macOKFeb 15 2025
R-4.5-linuxOKFeb 15 2025
R-4.4-winOKFeb 15 2025
R-4.4-macOKFeb 15 2025
R-4.3-winOKFeb 15 2025
R-4.3-macOKFeb 15 2025

Exports:age.processbets.inferencebets.likelihooddate.processpreprocess.data

Dependencies:rootSolve